Patient
NAME

John A

DATE OF BIRTH

DISEASE

Healthy / Screening

N/A

SPECIMEN

VIAL IDs

15ml Blood

Physician
NAME

Administrator

REPORT SUMMARY

According to the gene expression profile of peripheral mononuclear cells, the sample is classified as **Healthy**.

Information

Laboratory Process

- Isolation of Peripheral Blood Mononuclear Cells (PBMCs) using a density gradient medium and centrifugation
- Extraction of mRNA
- Reversed transcription of mRNA to cDNA
- Real-Time Quantitative Polymerase Chain Reaction in more than 90 genes
- Relative Gene Expression analysis
- Classification with different algorithms (Machine Learning - Classifiers):
 - Support Vector Machines (SVM)
 - Nearest Neighbor (NN)
 - Ensemble
 - Neural Networks

- Genes which are studied associated with:
 - Cell Cycle Regulation
 - Angiogenesis
 - Apoptosis
 - Self-Repair Mechanisms
 - Signal Transduction pathways
 - Akt Signaling Pathway
 - JAK-STAT Signaling Pathway
 - MAPK Signaling Pathway
 - mTOR Signaling Pathway
 - NF-kB Signaling Pathway
 - P53 Signaling Pathway
 - TGF-β Signaling Pathway
 - VEGF Signaling Pathway etc.

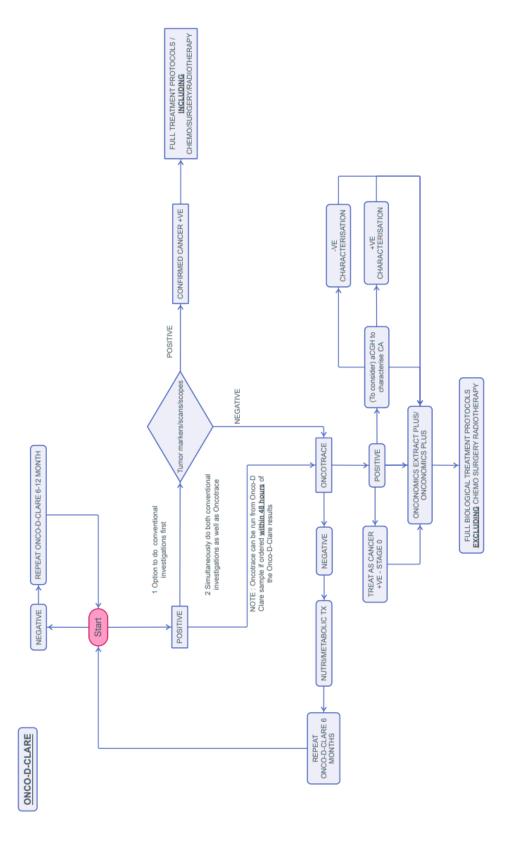
Disclaimers

The recommended assay is based on the synergy of molecular biology with artificial neural networks.

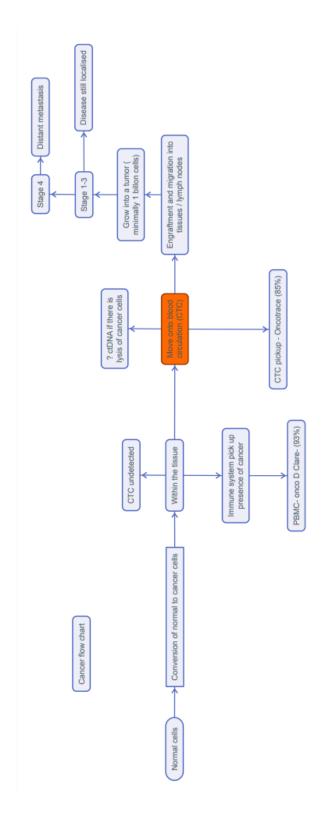
Onco-D-Clare is not a stand alone test and further investigations are needed to confirm the presence of a tumor in your body. Please work with your practitioner to do so as further investigations are recommended

- Accuracy (%) = 93.34 ± 2.88
- True Positive Rate (%) = 92.40 ± 5.68
- True Negative Rate (%) = 94.78 ± 6.78

Sincerely,



- a. Saba T. Recent advancement in cancer detection using machine learning: Systematic survey of decades, comparisons and challenges. J Infect Public Health. 2020 Sep;13(9):1274-1289. doi: 10.1016/j.jiph.2020.06.033. Epub 2020 Aug 2. PMID: 32758393.
- b. Iqbal MJ, Javed Z, Sadia H, Qureshi IA, Irshad A, Ahmed R, Malik K, Raza S, Abbas A, Pezzani R, Sharifi-Rad J. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future. Cancer Cell Int. 2021 May 21;21(1):270. doi: 10.1186/s12935-021-01981-1. PMID: 34020642; PMCID: PMC8139146.
- c. Kourou K, Exarchos KP, Papaloukas C, Sakaloglou P, Exarchos T, Fotiadis DI. Applied machine learning in cancer research: A systematic review for patient diagnosis, classification and prognosis. Comput Struct Biotechnol J. 2021 Oct 6;19:5546–5555. doi: 10.1016/j.csbj.2021.10.006. PMID: 34712399; PMCID: PMC8523813.
- d. Musa IH, Afolabi LO, Zamit I, Musa TH, Musa HH, Tassang A, Akintunde TY, Li W. Artificial Intelligence and Machine Learning in Cancer Research: A Systematic and Thematic Analysis of the Top 100 Cited Articles Indexed in Scopus Database. Cancer Control. 2022 Jan–Dec;29:10732748221095946. doi: 10.1177/10732748221095946. PMID: 35688650; PMCID: PMC9189515.
- e. Swanson K, Wu E, Zhang A, Alizadeh AA, Zou J. From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment. Cell. 2023 Apr 13;186(8):1772–1791. doi: 10.1016/j.cell.2023.01.035. Epub 2023 Mar 10. PMID: 36905928.
- f. Apostolou P, Iliopoulos AC, Parsonidis P, Papasotiriou I. Gene expression profiling as a potential predictor between normal and cancer samples in gastrointestinal carcinoma. Oncotarget. 2019 May 21;10(36):3328–3338. PMID: 31164955; PMCID: PMC6534363.
- g. Larsson AM, Nordström O, Johansson A, Rydén L, Leandersson K, Bergenfelz C. Peripheral Blood Mononuclear Cell Populations Correlate with Outcome in Patients with Metastatic Breast Cancer. Cells. 2022 May 13;11(10):1639. doi: 10.3390/cells11101639. PMID: 35626676; PMCID: PMC9139201.



Onco-D-clare Flow Chart

Cancer Flow Chart

