

PATIENT: >	(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	TEST REF: TST-NL-XXXXX	
TEST NUMB GENDER: AGE:	ER: T-NL-XXXXXX XXXXX XX	COLLECTED: 2025-XX-XX	PRACTITIONER: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
			xxxxxxxxxxxxxx

tinyhealth

Gut Health Test Report

The attached results are from the Gut Health microbiome test. This test uses shotgun metagenomic sequencing to identify all microbes (i.e., bacteria, viruses, fungi, archaea) present during sampling.

This microbiome report is intended to be used exclusively for wellness purposes and to educate you about the microbes in your body. This test is not intended to diagnose or treat disease, nor is it a substitute for a physician's consultation. The microbes referenced in your report and their associations are based on emerging scientific research. These insights were determined by evaluating current research and may change over time to reflect the most up-to-date research available.

About Tiny Health

Tiny Health provides at-home gut microbiome testing for all ages and vaginal microbiome testing for ages 18 and older, with specific insights tailored for each phase of life: infants, toddlers, children, and adults. We also have specific insights for those who are pregnant or trying to conceive.

Tiny Health metrics are based on tens of thousands of samples reflecting both publicly available reference samples and proprietary Tiny Health customer data.

About our technology

This test uses shotgun metagenomic sequencing, the gold standard in microbiome research. Our report produces a comprehensive, high resolution picture of the microbiome compared to more traditional PCR tests, which are limited to a subset of microbes, or 16S methods, which have limited resolution.

All our tests are processed in a CLIA-certified lab using customized, proprietary technology. With strain-level precision, our test can detect over 120,000 microbes (i.e., bacteria, viruses, fungi, archaea, and many parasites) commonly found in gut and vaginal microbiomes.

For practitioners

We're building a community of practitioners who want to help patients understand the root cause of symptoms and conditions and be supported by the latest evidence-based microbiome research.

If you want to access our practitioner resources or have any questions for our scientific and clinical team, please contact us at practitioners@tinyhealth.com.

www.tinyhealth.com www.poweredbytiny.com

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00 UK Office:

11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page: 1 of 23

TEST NUMBER: T-NL-XXXXXX

GENDER: XXXXX AGE: XX

COLLECTED: 2025-XX-XX

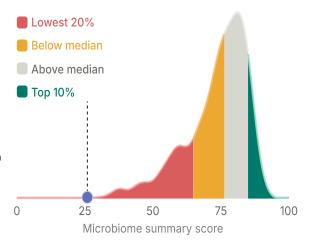
TEST REF: TST-NL-XXXXX

PRACTITIONER

XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

TEST NAME: [Baby Gut Health] Tiny Health Sample Report


Microbiome Summary Score

Your gut microbiome score evaluates all the relevant metrics for your age range into a single number, giving you a clear picture of how your microbiome stacks up. The score ranges from 0 to 100. A score closer to 100 suggests your microbiome is in excellent shape compared to the reference population. Conversely, a score closer to 0 indicates more areas for improvement.

We calculate this score by looking at various factors in your gut/vaginal microbiome, such as the balance of beneficial bacteria versus opportunistic pathogens. We then compare these factors to a wide range of individuals. Our dataset includes publicly available reference samples and proprietary data from Tiny Health customers.

To determine your percentile, we compare your Microbiome Summary Score to others in the same age range to help you understand what is typical and where your sample falls. For example, if you are in the 41st percentile, 41% of comparable samples have a lower Microbiome Summary Score and 59% have a higher score.

Sample at a glance (A) 11 Needs support (I) 6 Needs improvement

lmmur	Immune Strength				
Δ	Bifidobacterium 0.315%				
Δ	HMO-digesting species 0.165%				
	otic Resistance Signature				
Δ	Abundance index 0.71				
Oppor	tunistic Pathogens				
1	Enterobacteriaceae				
A	Klebsiella12.338%				
Δ	Enterococcus faecium				
Δ	Clostridium perfringens 0.262%				
C-sec	C-section Signature				
Δ	C-section Signature 0.74				
Hydro	Hydrogen sulfide index				
A	Hydrogen sulfide index13				

Acetate Capacity

A	Acetate	954 rpkm
HMO D	Digestion Capacity	
	2!-Eucocyllactoco	271 rokes

1 2'-Fucosyllactose 271 rpkm Sialyllactose131 rpkm Other HMOs 611 rpkm

Microbiome Maturation

🛕 Maturation index 503 predicted days

Major Bacterial Phyla

Actinobacteriota 0.913%

Common Microbiome Members Blautia 8.468%

Histamine-producing Species

tinyhealth

Tiny Health Lab Director: Carlos J Ruiz, MD • CLIA ID: 21D2062464

Note: This microbiome report is exclusively intended to be used for wellness purposes and to educate you about the microbes in your body. The tests we offer are not intended to diagnose or treat disease, or to substitute a physician's consultation. The microbes we talk about in your report, and their associations, are based on emerging scientific research. Feel free to share this with your physician or practitioner. These insights are determined by evaluating current research and may change over time to reflect the most up to date research available

Nordic Laboratories Aps

UK Office:

Page: 2 of 23

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00

11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

XXXXXXXXXXXXXXXX

TEST NAME: [Baby Gut Health] Tiny Health Sample Report

Results Summary

	Metrics	Clinical indication examples
Beneficial microbes	 ▲ Immune Strength ❖ Metabolic Health ❖ Anti-inflammatory Markers ❖ Common Probiotic Species 	 Prebiotics / probiotics support Review Akkemansia promoting supplements Track and diversify fiber intake Increase fermented foods Move and stay physically active
Disruptive microbes	 ⚠ Antibiotic Resistance Signature ⚠ Opportunistic Pathogens ☑ Potential Stomach Inflammation ☑ Parasites and Infection ☑ Potential Fungal Overgrowth ⚠ C-section Signature ☑ Methane Production 	 Potential anti-microbial support (e.g., herbs) Prebiotics / probiotics support Close monitoring post-antibiotics to track recovery Nutritional support and therapeutic diet (e.g., AIP, candida diet, etc) Review symptoms/conditions Consider additional testing (e.g., SIBO, OAT, nutritional labs etc)
Gut inflammation markers	 Hexa-LPS index Mucus degradation index Hydrogen sulfide index Host DNA 	 Modulate stress levels Lifestyle changes (e.g., exercise, sleep) Nutritional support and therapeutic diet (e.g., AIP, candida diet, etc) Support GI motility (e.g., hydration, pysllium, acacia, pectin, HMOs etc) GI barrier support (e.g., tumeric, quercetin, L-glutamine) Soothe mucosal lining (i.e. SBI/ colostrum, marshmallow) Consider additional testing (e.g., SIBO, OAT, nutritional labs etc)
Short-chain fatty acids	 Butyrate Capacity Propionate Capacity Acetate Capacity 	 Track and diversify fiber intake Prebiotics / probiotics / postbiotics support Increase fermented foods Supportive nutraceuticals (butyrate supplements, spore-based probiotics) Detoxification supports (calcium d-glucarate, broccoli sprouts, DIM)
Digestion & absorption markers	HMO Digestion Capacity	 Consider balanced, nutrient-dense whole foods diet Track and diversify fiber intake Gastric acid optimization (e.g., Betaine HCL, Apple Cider Vinegar) Digestive enhancement (e.g., digestive bitters, digestive enzymes, bile salts) Mindful eating habits (e.g., chew well, timing of meals, etc) Support GI motility (e.g., hydration, pysllium, acacia, pectin, HMOs etc)

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00 UK Office:

11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page: 3 of 23

XXXXXXXXXXXXXXXX

TEST NAME: [Baby Gut Health] Tiny Health Sample Report

Balance and robustness	 Microbiome Diversity Microbiome Maturation Major Bacterial Phyla Common Microbiome Members Gut Ratio 	 Track and diversify fiber intake Increase fermented foods Use non-toxic cleaners / reduce antimicrobials
Microbial enzymes & metabolites	Histamine-producing Species	

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00 UK Office:

11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page: 4 of 23

PATIENT: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		ХХХ	TEST REF: TST-NL-XXXXX
TEST NUMBER: T-NL-XXXXXX		COLLECTED: 2025-XX-XX	PRACTITIONER:
GENDER:	XXXXX		*******
AGE:	XX		

XXXXXXXXXXXXXXXXXX

TEST NAME: [Baby Gut Health] Tiny Health Sample Report

Detailed Gut Health Test Results Legend: (p) Phylum (f) Family (g) Genus (sp) Species Beneficial Immune Strength microbes 🛕 Bifidobacterium (g) 0.315% 80% Bifidobacterium breve (sp) 0.098% Bifidobacterium longum (sp) 0.067% Bifidobacterium pseudocatenulatum 0.097% 0.165% HMO-digesting species Metabolic Health 5.5% Akkermansia (g) 0.097% 0.05% Akkermansia muciniphila (sp) 0.087% Anti-inflammatory Markers Faecalibacterium (g) 1.468% 0.05% 0.121% Faecalibacterium prausnitzii (sp) Faecalibacterium prausnitzii_C (sp) 0.325% Faecalibacterium prausnitzii_G (sp) 0.832% **Common Probiotic Species** Bifidobacterium (q) 0.315% Lactobacillaceae (f) 0.477% Lacticaseibacillus rhamnosus (sp) 0.091% Lacticaseibacillus paracasei (sp) 0.368% Bifidobacterium longum (sp) 0.067% Bifidobacterium breve (sp) 0.098%

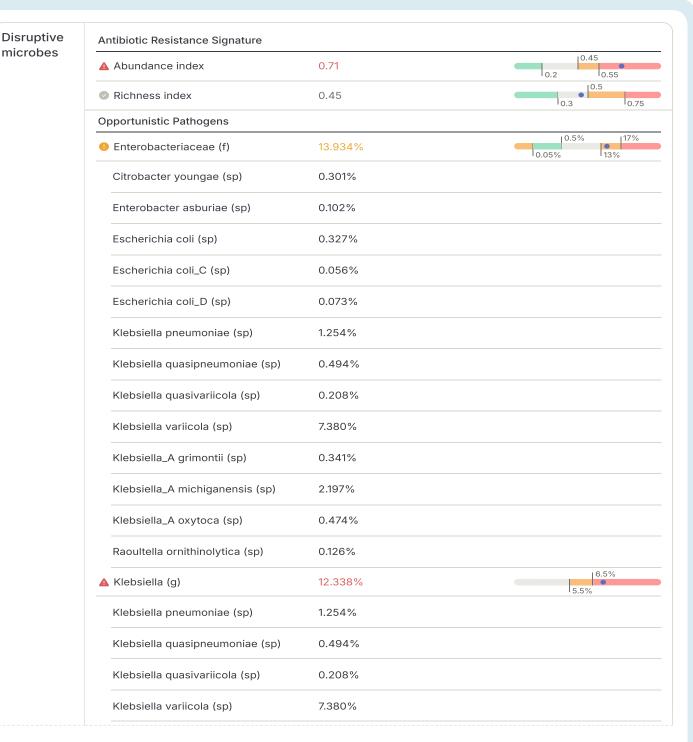
tinyhealth

Tiny Health Lab Director: Carlos J Ruiz, MD • CLIA ID: 21D2062464

Note: This microbiome report is exclusively intended to be used for wellness purposes and to educate you about the microbes in your body. The tests we offer are not intended to diagnose or treat disease, or to substitute a physician's consultation. The microbes we talk about in your report, and their associations, are based on emerging scientific research. Feel free to share this with your physician or practitioner. These insights are determined by evaluating current research and may change over time to reflect the most up to date research available.

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00 UK Office:


11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page: 5 of 23

XXXXXXXXXXXXXXXXX

TEST NAME: [Baby Gut Health] Tiny Health Sample Report

tiny health

Tiny Health Lab Director: Carlos J Ruiz, MD • CLIA ID: 21D2062464

Note: This microbiome report is exclusively intended to be used for wellness purposes and to educate you about the microbes in your body. The tests we offer are not intended to diagnose or treat disease, or to substitute a physician's consultation. The microbes we talk about in your report, and their associations, are based on emerging scientific research. Feel free to share this with your physician or practitioner. These insights are determined by evaluating current research and may change over time to reflect the most up to date research available.

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00 UK Office:

11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page: 6 of 23

PATIENT: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			TEST REF: TST-NL-XXXXX
TEST NUMBER: T-NL-XXXXXX GENDER: XXXXX AGE: XX		COLLECTED: 2025-XX-XX	PRACTITIONER: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
			xxxxxxxxxxxxxx

Disruptive microbes	Klebsiella_A grimontii (sp)	0.341%	
merobes	Klebsiella_A michiganensis (sp)	2.197%	
	Klebsiella_A oxytoca (sp)	0.474%	
	Klebsiella pneumoniae (sp)	1.254%	3.5%
	Klebsiella oxytoca (sp)	0.475%	1.5%
	Salmonella enterica (sp)	0.000%	0.45%
	Escherichia coli (sp)	0.456%	7.5%
	Escherichia coli (sp)	0.327%	
	Escherichia coli_C (sp)	0.056%	
	Escherichia coli_D (sp)	0.073%	
	Escherichia flexneri (sp)	0.000%	1.5%
	Escherichia dysenteriae (sp)	0.000%	1%
	Streptococcus (g)	0.301%	3.5%
	Streptococcus anginosus_C (sp)	0.177%	
	Streptococcus sp900543065 (sp)	0.061%	
	Staphylococcus (g)	0.000%	0.1%
	Pseudomonas aeruginosa (sp)	0.000%	0.1%
	Haemophilus influenzae (sp)	0.000%	0.1%
	Haemophilus parainfluenzae (sp)	0.000%	0.25%
	▲ Enterococcus faecium (sp)	3.273%	1.25%
	Enterococcus faecalis (sp)	1.540%	2%
	Clostridioides difficile (sp)	0.337%	0.55%
	▲ Clostridium perfringens (sp)	0.262%	0.25%
	Acinetobacter baumannii (sp)	0.000%	•

tiny health

Tiny Health Lab Director: Carlos J Ruiz, MD • CLIA ID: 21D2062464

Note: This microbiome report is exclusively intended to be used for wellness purposes and to educate you about the microbes in your body. The tests we offer are not intended to diagnose or treat disease, or to substitute a physician's consultation. The microbes we talk about in your report, and their associations, are based on emerging scientific research. Feel free to share this with your physician or practitioner. These insights are determined by evaluating current research and may change over time to reflect the most up to date research available.

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00 UK Office:

11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page: 7 of 23

TEST NUMBER: T-NL-XXXXXX

GENDER: XXXXX
AGE: XX

COLLECTED: 2025-XX-XX

TEST REF: TST-NL-XXXXX

PRACTITIONER:

XXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

TEST NAME: [Baby Gut Health] Tiny Health Sample Report

Disruptive	Campylobacter (g)	0.000%	0.1%
microbes	Potential Stomach Inflammation		
	Helicobacter pylori (sp)	0.000%	0.05%
	Parasites and Infection		
	Blastocystis (g)	0.000%	0.12%
	Cryptosporidium (g)	0.000%	0.05%
	Entamoeba histolytica (sp)	0.000%	0.05%
	Entamoeba dispar (sp)	0.000%	0.05%
		0.000%	0.05%
	Yersinia enterocolitica (sp)	0.000%	0.05%
		0.000%	0.05%
	Vibrio cholerae (sp)	0.000%	0.05%
	Oyclospora cayetanensis (sp)	0.000%	
	Potential Fungal Overgrowth		
	Candida (g)	0.000%	0.05%
	Aspergillus (g)	0.000%	0.05%
	Cryptococcus (g)	0.000%	0.05%
	Saccharomyces (g)	0.000%	0.5%
	Rhodotorula (g)	0.000%	0.05%
	Saprochaete (g)	0.000%	0.05%
		0.000%	0.05%
	Microsporum (g)	0.000%	0.05%
	Trichophyton (g)	0.000%	0.05%
	C-section Signature		
	▲ C-section Signature	0.74	0.18

tinyhealth

Tiny Health Lab Director: Carlos J Ruiz, MD • CLIA ID: 21D2062464

Note: This microbiome report is exclusively intended to be used for wellness purposes and to educate you about the microbes in your body. The tests we offer are not intended to diagnose or treat disease, or to substitute a physician's consultation. The microbes we talk about in your report, and their associations, are based on emerging scientific research. Feel free to share this with your physician or practitioner. These insights are determined by evaluating current research and may change over time to reflect the most up to date research available.

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00 UK Office:

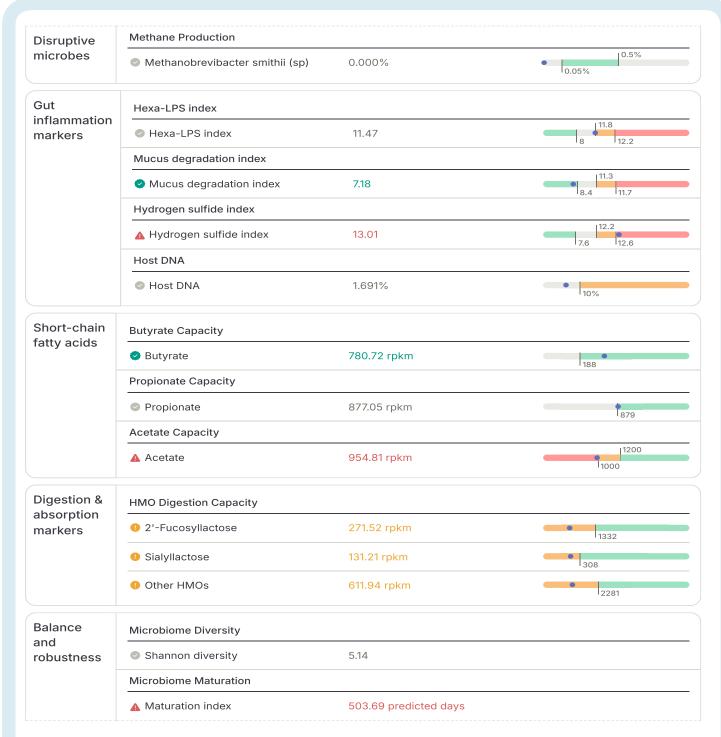
11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page: 8 of 23

TEST NUMBER: T-NL-XXXXXX

GENDER: XXXXX
AGE: XX

COLLECTED: 2025-XX-XX


TEST REF: TST-NL-XXXXX

PRACTITIONER:

XXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

TEST NAME: [Baby Gut Health] Tiny Health Sample Report

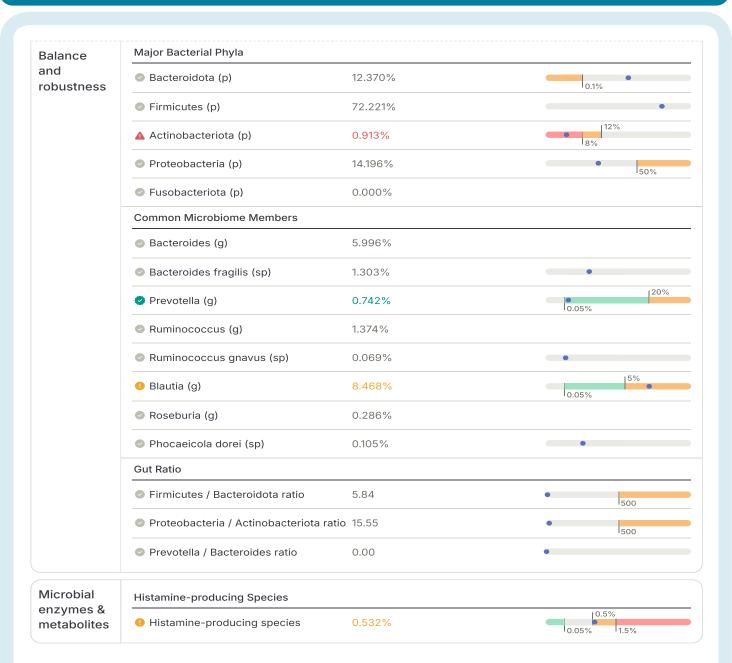
tiny health

Tiny Health Lab Director: Carlos J Ruiz, MD • CLIA ID: 21D2062464

Note: This microbiome report is exclusively intended to be used for wellness purposes and to educate you about the microbes in your body. The tests we offer are not intended to diagnose or treat disease, or to substitute a physician's consultation. The microbes we talk about in your report, and their associations, are based on emerging scientific research. Feel free to share this with your physician or practitioner. These insights are determined by evaluating current research and may change over time to reflect the most up to date research available.

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00 UK Office:


11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page: 9 of 23

XXXXXXXXXXXXXXXXX

TEST NAME: [Baby Gut Health] Tiny Health Sample Report

tiny health

Tiny Health Lab Director: Carlos J Ruiz, MD • CLIA ID: 21D2062464

Note: This microbiome report is exclusively intended to be used for wellness purposes and to educate you about the microbes in your body. The tests we offer are not intended to diagnose or treat disease, or to substitute a physician's consultation. The microbes we talk about in your report, and their associations, are based on emerging scientific research. Feel free to share this with your physician or practitioner. These insights are determined by evaluating current research and may change over time to reflect the most up to date research available.

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00 UK Office:

11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page: 10 of 23

TEST NUMBER: T-NL-XXXXXX

GENDER: XXXXX
AGE: XX

COLLECTED: 2025-XX-XX

TEST REF: TST-NL-XXXXX

PRACTITIONER:

XXXXXXXXXXXXXXXXXXXX


XXXXXXXXXXXXXXXXX

TEST NAME: [Baby Gut Health] Tiny Health Sample Report

Major Microbial Members & Ratios

Common Bacterial Phyla

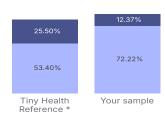
Bacteroidota

Proteobacteria

Fusobacteriota

0.1%

72.22%


12.37%

14.20%

0.00%

Gut Ratio

Firmicutes:Bacteroidota Ratio

Firmicutes and Bacteroidota are the two largest phyla that make up the gut microbiome in humans. Historically and primarily in 16S studies, the ratio of Firmicutes/Bacteroidota has been associated with a number of conditions in adults, including obesity, Type 2 Diabetes, and inflammation. However, the use of these markers is now considered dated by current microbiome researchers, and the validity of these associations has been called into question.

■ Firmicutes ■ Bacteroidota

17.30% 14.20% 2.50% Tiny Health Reference *

Proteobacteria: Actinobacteriota Ratio

15.55 (Ideally <14)

5.84 (Ideally <30)

Aside from Firmicutes and Bacteroidota, Proteobacteria and Actinobacteriota are two common phyla in the gut microbiome in humans. Proteobacteria are widely associated with pathogens, while Actinobacteriota are associated with commensal species. Historically in primarily 16S studies, the ratio of Proteobacteria:Actionbacteriota has been associated with gut inflammation. However, the use of these markers is now considered dated by current microbiome researchers, and the validity of these associations has been called into question.

Proteobacteria Actinobacteriota

2.30% 12.40% 6.00% Tiny Health Reference *

Prevotella:Bacteroides Ratio

0.00 (Ideally >4)

Prevotella and Bacteroides are two common genera in the gut microbiome in humans. One or the other often dominates the gut microbiome, and can define the Gut Type. Prevotella are widely associated with a high fiber diet, while Bacteroides are associated with a diet high in fat and protein. Historically in primarily 16S studies, the ratio of Prevotella:Bacteroides has been associated with body weight, fat loss, and diet success. However, the use of these markers is now considered dated by current microbiome researchers, and the validity of these associations has been called into question.

■ Bacteroides ■ Prevotella

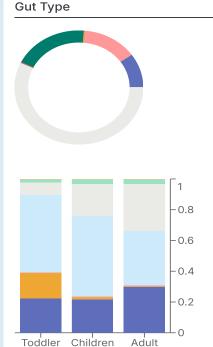
tinyhealth

Tiny Health Lab Director: Carlos J Ruiz, MD • CLIA ID: 21D2062464

Note: This microbiome report is exclusively intended to be used for wellness purposes and to educate you about the microbes in your body. The tests we offer are not intended to diagnose or treat disease, or to substitute a physician's consultation. The microbes we talk about in your report, and their associations, are based on emerging scientific research. Feel free to share this with your physician or practitioner. These insights are determined by evaluating current research and may change over time to reflect the most up to date research available.

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00 UK Office:


11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page: 11 of 23

^{*}Tiny Health Reference: This represents a cohort that is free of any acute or chronic conditions, so they may be considered a "healthy" cohort

PATIENT: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		TEST REF: TST-NL-XXXXX	
TEST NUMB GENDER: AGE:	ER: T-NL-XXXXXX XXXXX XX	COLLECTED: 2025-XX-XX	PRACTITIONER: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
			xxxxxxxxxxxxxx

These bars represent the proportion of the different gut types in our database for different age ranges.

The gut type of a sample is determined by the dominant type of microbe in that sample.

Bacteroides	9.78%
Enterobacteriaceae	13.79%
Bifidobacterium	0.32%
■ Enterococcus	18.80%
Streptococcus	0.29%
Staphylococcus	0.00%
Other	56.93%

Type 7b

Baby Gut Type 7b is dominated by some lesser known bacteria with beneficial *Bifidobacterium* at low levels. This gut type has significant imbalances and we recommend taking steps to improve it. <u>How does your baby's results compare?</u> See the Key Insights section for what metrics are out of range and what actions you can take.

Bifidobacterium are beneficial and protective, so when they are low, it leaves the door open for unfriendly and variable microbes to take hold. In the first year of life, Bifidobacterium should dominate baby's gut. Click on the Immune Strength card in the Key Insights section for more info.

This gut type does not fit into any of the 6 gut types that we defined. Before 6 months, this is rare and is usually linked to a cesarian birth, vaginal birth with medical interventions, or formula-feeding.

tiny health

Tiny Health Lab Director: Carlos J Ruiz, MD • CLIA ID: 21D2062464

Note: This microbiome report is exclusively intended to be used for wellness purposes and to educate you about the microbes in your body. The tests we offer are not intended to diagnose or treat disease, or to substitute a physician's consultation. The microbes we talk about in your report, and their associations, are based on emerging scientific research. Feel free to share this with your physician or practitioner. These insights are determined by evaluating current research and may change over time to reflect the most up to date research available.

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00 UK Office:

11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page: 12 of 23

PATIENT: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			TEST REF: TST-NL-XXXXX	
TEST NUMBER: T-NL-XXXXXX GENDER: XXXXX AGE: XX		COLLECTED: 2025-XX-XX	PRACTITIONER: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
			xxxxxxxxxxxxxx	

Microbiome Breakdown

- Beneficial: These support microbiome health and overall health.
- Unfriendly: Low levels of these microbes are expected. Higher levels for extended periods of time can cause
 issues. This should make up a minority of the microbiome, kept in check by beneficial and variable microbes.
 Any unfriendly microbes out of range will be flagged in the "Detailed Gut Health Test Results" section above.
- Variable: These can be beneficial or unfriendly depending on their levels and what other microbes are around them. Lower levels are usually ok, and higher levels can cause issues.
- Unknown: These are lesser known microbes. Not enough is known to classify them as beneficial, unfriendly
 or variable at this time.

Your breakdown

● Beneficial 21% Variable 56% Unfriendly 14% Unknown 9%

Top 20 species

Metric	Result	Description
Enterococcus_B lactis	13.097%	E. lactis usually grows in fermented milk and cheeses. In the gut, this bacterium may provide benefits, as some strains can inhibit the growth of unfriendly bacteria and cancer cells.
		E. lactis may dominate the gut of babies born by c-section, whose levels of bifidobacteria are low.
Enterocloster aldenensis	10.712%	Enterocloster are variable bacteria that contribute to gut health by producing short-chain fatty acids. On rare occasions, species such as <i>E. aldenensis</i> can cause infection outside of the gut. But this shouldn't be a concern for healthy people.
		A small study found that babies whose moms had a hypertensive pregnancy had lower levels of <i>E. aldenensis</i> than babies whose moms had a normotensive pregnancy.
		In adults, following a diet rich in dairy products for several weeks has been shown to reduce <i>E. aldenensis</i> levels. In contrast, eating more beans may increase the levels of these bacteria.
Clostridium neonatale	9.093%	Clostridium neonatale is present in 15-20% of healthy babies including preterm or C-section delivered babies.
		However, if given the opportunity, <i>C. neonatale</i> can cause infection. Increased numbers of this species have been associated with a disease called necrotizing enterocolitis, especially in preterm babies. It is better to watch out for the levels of this bug.
Klebsiella variicola	7.380%	K. variicola may live in the gut without causing any trouble, like other Klebsiella species.
		Outside of the gut though, it may cause infection if its numbers go up, especially in immunocompromised patients and babies.
		It can be resistant to several antibiotics.

tiny health

Tiny Health Lab Director: Carlos J Ruiz, MD • CLIA ID: 21D2062464

Note: This microbiome report is exclusively intended to be used for wellness purposes and to educate you about the microbes in your body. The tests we offer are not intended to diagnose or treat disease, or to substitute a physician's consultation. The microbes we talk about in your report, and their associations, are based on emerging scientific research. Feel free to share this with your physician or practitioner. These insights are determined by evaluating current research and may change over time to reflect the most up to date research available.

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00 UK Office:

11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page: 13 of 23

PATIENT: XXX	TEST REF: TST-NL-XXXXX		
TEST NUMBER: T-	-NL-XXXXXX XXXX	COLLECTED: 2025-XX-XX	PRACTITIONER: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AGE: X	X		xxxxxxxxxxxxxx

• Blautia_A sp900120195	4.538%	This is a newly detected species of <i>Blautia</i> so we don't know much about it. Like most <i>Blautia</i> , it probably thrives on plant-based foods and provides benefits to your gut.
Clostridium paraputrificum	3.975%	Clostridium paraputrificum are variable bacteria found in the gut. This means that they can either disrupt your health or support it. This bug can also be present in preterm babies in neonatal care units.
		When given the opportunity, C. paraputrificum can cause infection.
		C. paraputrificum have been associated with infections in children and adults, such as:
		Bacteremia
		Necrotizing enterocolitis
		Septic arthritis
		• Cysts
		However this is extremely rare. This bug only accounts for 1% of human infections caused by <i>Clostridium</i> species. This mostly occurs in immunocompromised, elderly, and diabetic patients.
• Enterococcus_B faecium	3.273%	E. faecium is a variable member of the gut microbiome, present in many people. It may not cause any harm and even be beneficial but it can cause different infections outside of the gut.
		It is considered an important bacterial species to monitor by the World Health Organization due to its widespread antibiotics resistance.
		Because of this resistance, <i>E. faecium</i> may temporarily predominate in the gut of babies after antibiotic treatment.
Phocaeicola vulgatus	3.199%	P. vulgatus is one of the most abundant bacteria in the human gut, detected very early in babies.
		People with cardiovascular disease have low levels of <i>P. vulgatus</i> which could indicate it is a beneficial bacterium.
		But women with polycystic ovary syndrome have high levels of it. And <i>P. vulgatus</i> has been associated with Crohn's disease and ulcerative colitis, although the effects depend on the strain. Also, when in high numbers throughout the first two years of life, it may contribute to the development of Type 1 diabetes.
Veillonella parvula_A	2.968%	V. parvula is a common member of the mouth and gut microbiome.
		While in the gut it contributes to health by producing beneficial short-chain fatty acids too much <i>V. parvula</i> may not be optimal for babies.
		Babies born by c-section have higher levels of Veillonella than babies born vaginally.
		On occasions, V. parvula can become unfriendly and cause abscesses.
Klebsiella_A michiganensis	2.197%	K. michiganensis may live in the gut without causing any trouble, like other Klebsiella species.
		Outside of the gut though, it may cause infection if its numbers go up, especially in immunocompromised patients and babies.
		It can be resistant to several antibiotics which may be a problem for preterm babies, who have been shown to have this species in their gut.
Bacteroides xylanisolvens	1.909%	<i>B. xylanisolvens</i> is very good at digesting soluble fiber from fruits and insoluble fiber from cereals. It contributes to gut health by transforming fiber into beneficial short-chain fatty acids.
		We don't know for sure, but it may be protective against certain diseases. People with atherosclerosis and children with type 1 diabetes have low levels of <i>B. xylanisolvens</i> in their gut.

tiny health

Tiny Health Lab Director: Carlos J Ruiz, MD • CLIA ID: 21D2062464

Note: This microbiome report is exclusively intended to be used for wellness purposes and to educate you about the microbes in your body. The tests we offer are not intended to diagnose or treat disease, or to substitute a physician's consultation. The microbes we talk about in your report, and their associations, are based on emerging scientific research. Feel free to share this with your physician or practitioner. These insights are determined by evaluating current research and may change over time to reflect the most up to date research available.

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00 UK Office:

11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page: 14 of 23

PATIENT:)	(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXX	TEST REF: TST-NL-XXXXX
TEST NUMB GENDER: AGE:	EER: T-NL-XXXXXX XXXXX XX	COLLECTED: 2025-XX-XX	PRACTITIONER: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
			xxxxxxxxxxxxxx

Blautia_A wexlerae	1.668%	B. wexlerae is one of the most abundant Blautia species in humans. Alor with a healthy diet high in fiber, it may contribute to healthy metabolism.
		High levels of <i>B. wexlerae</i> may protect against obesity, insulin resistance eczema and inflammation.
Bacteroides uniformis	1.594%	Lots of healthy people have <i>B. uniformis</i> in their gut. This bacterium is very good at digesting a wide range of plant-based foods.
		It has anti-inflammatory properties that keep your gut healthy. It may als have a role in reducing binge eating and anxiety.
		Breastfeeding is a good way to boost <i>B. uniformis</i> levels in babies.
 Enterococcus faecalis 	1.539%	E. faecalis is a variable member of the gut microbiome, present in many people. It provides benefits to our immune system and helps us get nutrients from food.
		If the gut barrier is disrupted, <i>E. faecalis</i> may cross it and cause infection outside of the gut. But this is very unlikely to occur in healthy, young people.
Bacteroides fragilis	1.261%	B. fragilis is a variable bacteria species in your gut microbiome. In low counts, it can benefit your health and well-being.
		However, if your <i>B. fragilis</i> levels are too high, you can get into trouble. Not only can they contribute to inflammation by damaging your gut's structure, but the species can cause serious infections.
		In children, high levels of <i>B. fragilis</i> may contribute to constipation. One study suggests that high levels of B. fragilis can also increase the risk of asthma and eczema development.
		It's important to keep levels of "friend or foe" in the sweet spot. <i>B. fragili</i> competitors in your gut community love a high-fiber diet. Stick to fruits, veggies, and complex carbohydrates.
Klebsiella pneumoniae	1.254%	Lots of healthy people have <i>K. pneumoniae</i> bacteria in their gut microbiomes.
		However, these unfriendly microbes can cause infection if their numbers get too high outside of the gut.
		This can be a problem for immunocompromised people and babies, especially in healthcare settings and nursing homes. Having a catheter of undergoing antibiotic treatment can also put you at risk. In babies, high levels of this bug may also contribute to development of allergies.
		K. pneumoniae infections can be dangerous since they're often resistanto antibiotic treatment. Luckily, these bacteria don't typically cause any issue for healthy people.
Flavonifractor plautii	1.120%	F. plautii is a variable species of bacteria that lives in your gut. It can digest flavonoids, compounds found in fruits and veggies.
		In low numbers, it's not a cause for concern in healthy people. In fact, some studies suggest it may protect you against allergies and the flu.
		But if its numbers go up and your gut barrier is compromised, it may use that opportunity to cause infection.
Enterocloster clostridioformis	1.038%	E. clostridioformis is a variable species of bacteria that lives in your gut. low numbers, it's not a cause for concern in healthy people.
		But if its numbers go up and your gut barrier is compromised, it may cause intra-abdominal infections and abscesses.
		E. clostridioformis levels may temporarily increase after antibiotic treatment because some strains are antibiotic-resistant. A good way to keep it at bay is to boost beneficial bacteria with a healthy diet and probiotics.

tiny health

Tiny Health Lab Director: Carlos J Ruiz, MD • CLIA ID: 21D2062464

Note: This microbiome report is exclusively intended to be used for wellness purposes and to educate you about the microbes in your body. The tests we offer are not intended to diagnose or treat disease, or to substitute a physician's consultation. The microbes we talk about in your report, and their associations, are based on emerging scientific research. Feel free to share this with your physician or practitioner. These insights are determined by evaluating current research and may change over time to reflect the most up to date research available.

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00 UK Office:

11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page: 15 of 23

PATIENT: XXX	PATIENT: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		TEST REF: TST-NL-XXXXX	
	-NL-XXXXX XXXX X	COLLECTED:	2025-XX-XX	PRACTITIONER: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

TEST NAME: [Baby Gut Health] Tiny Health Sample Report

Robinsoniella sp900540475	0.995%	The role of <i>Robinsoniella sp900540475</i> in gut health is not clear. We know that <i>R. peoriensis</i> , a related species, can cause infections outside of the gut, usually following trauma and/or surgery. In some cases this seems to be related to a disrupted gut barrier.
Faecalibacterium prausnitzii_G	0.832%	Common in many healthy microbiomes, <i>F. prausnitzii</i> is a beneficial species. These bugs are known for curbing inflammation, keeping your gut healthy, and protecting you from disease.
		These bacteria produce a special molecule called butyrate. It plays a role in supporting immune system function and the structural integrity of your gut.
		Low <i>F. prausnitzii</i> counts are linked to type 2 diabetes, obesity and a handful of gut-related conditions. All the more reason to show these friendly partners some love.

tinyhealth

Tiny Health Lab Director: Carlos J Ruiz, MD • CLIA ID: 21D2062464

Note: This microbiome report is exclusively intended to be used for wellness purposes and to educate you about the microbes in your body. The tests we offer are not intended to diagnose or treat disease, or to substitute a physician's consultation. The microbes we talk about in your report, and their associations, are based on emerging scientific research. Feel free to share this with your physician or practitioner. These insights are determined by evaluating current research and may change over time to reflect the most up to date research available.

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00 UK Office:

11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page: 16 of 23

TEST NUMBER: T-NL-XXXXXX

GENDER: XXXXX
AGE: XX

COLLECTED: 2025-XX-XX

TEST REF: TST-NL-XXXXX

PRACTITIONER:

XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

TEST NAME: [Baby Gut Health] Tiny Health Sample Report

All species			
Prevotella copri	0.680%	• Enterococcus_B durans	0.674%
Enterocloster bolteae	0.633%	Agathobacter rectalis	0.607%
KLE1615 sp900066985	0.587%	Fusicatenibacter saccharivorans	0.553%
Blautia_A sp900066355	0.504%	Klebsiella quasipneumoniae	0.494%
Klebsiella_A oxytoca	0.474%	Ruminococcus_C callidus	0.440%
Alistipes finegoldii	0.439%	Mediterraneibacter faecis	0.423%
Barnesiella intestinihominis	0.422%	Veillonella_A seminalis	0.388%
• Lachnospira eligens_A	0.373%	Lacticaseibacillus paracasei	0.368%
Anaerostipes hadrus	0.365%	Ruminococcus_E bromii_B	0.351%
• Klebsiella_A grimontii	0.341%	Ruminococcus_D bicirculans	0.335%
Blautia_A obeum_B	0.334%	Odoribacter splanchnicus	0.330%
Escherichia coli	0.327%	Faecalibacterium prausnitzii_C	0.325%
Clostridioides difficile	0.322%	Alistipes shahii	0.307%
Citrobacter youngae	0.301%	Clostridium beijerinckii	0.286%
Bacteroides ovatus	0.274%	Blautia_A wexlerae_A	0.267%
Mediterraneibacter lactaris	0.266%	Clostridium_P perfringens	0.262%
Blautia_A massiliensis	0.255%	Blautia_A obeum	0.244%
Bacteroides caccae	0.239%	 Blautia_A sp900066145 	0.209%
Coprococcus eutactus	0.209%	Klebsiella quasivariicola	0.208%
Anaerobutyricum hallii	0.197%	Bacteroides thetaiotaomicron	0.189%
• Flavonifractor sp000508885	0.189%	Agathobacter faecis	0.181%
• Lachnospira sp000436535	0.180%	Streptococcus anginosus_C	0.177%
Blautia_A sp003480185	0.175%	Robinsoniella sp900539655	0.175%
Robinsoniella peoriensis	0.169%	• Eggerthella lenta	0.160%
CAG-217 sp000436335	0.152%	Parabacteroides merdae	0.150%
• Lachnospira sp000437735	0.143%	CAG-269 sp000437215	0.140%
Roseburia inulinivorans	0.138%	Enterocloster sp000431375	0.135%
 Parabacteroides distasonis 	0.131%	Raoultella ornithinolytica	0.126%
Faecalibacterium prausnitzii	0.121%	Faecalibacillus intestinalis	0.116%

tinyhealth

Tiny Health Lab Director: Carlos J Ruiz, MD • CLIA ID: 21D2062464

Note: This microbiome report is exclusively intended to be used for wellness purposes and to educate you about the microbes in your body. The tests we offer are not intended to diagnose or treat disease, or to substitute a physician's consultation. The microbes we talk about in your report, and their associations, are based on emerging scientific research. Feel free to share this with your physician or practitioner. These insights are determined by evaluating current research and may change over time to reflect the most up to date research available.

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00 UK Office:

11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page: 17 of 23

TEST NUMBER: T-NL-XXXXXX

GENDER: XXXXX
AGE: XX

COLLECTED: 2025-XX-XX

TEST REF: TST-NL-XXXXX

PRACTITIONER:

XXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

TEST NAME: [Baby Gut Health] Tiny Health Sample Report

Ruminococcus_A faecicola	0.113%	Collinsella aerofaciens_H	0.107%
Agathobaculum butyriciproducens	0.106%	Phocaeicola dorei	0.105%
CAG-41 sp900066215	0.103%	Dorea formicigenerans	0.102%
Enterobacter asburiae	0.102%	CAG-269 sp003525075	0.101%
Parasutterella excrementihominis	0.099%	Bifidobacterium breve	0.098%
Bifidobacterium pseudocatenulatum	0.097%	Clostridium_AP scindens	0.096%
Anaerostipes hadrus_B	0.095%	Bacteroides stercoris	0.093%
COE1 sp001916965	0.092%	Enterococcus_B hirae	0.091%
• Lacticaseibacillus rhamnosus	0.091%	Paenibacillus lactis	0.090%
Alistipes putredinis	0.089%	Bacteroides sp900556215	0.089%
Veillonella dispar	0.088%	Akkermansia muciniphila	0.087%
Alistipes onderdonkii	0.085%	Veillonella dispar_A	0.080%
Veillonella sp900757715	0.078%	Bacteroides finegoldii	0.077%
Bacteroides faecis	0.075%	Acetatifactor sp900066565	0.074%
• Escherichia coli_D	0.073%	CAG-81 sp900066785	0.070%
 Blautia_A sp003471165 	0.069%	Ruminococcus_B gnavus	0.069%
Bifidobacterium longum	0.067%	Clostridium_Q symbiosum	0.066%
TF01-11 sp001414325	0.066%	• TF01-11 sp003529475	0.066%
Phocaeicola sp900553715	0.064%	Roseburia intestinalis	0.062%
• Streptococcus sp900543065	0.061%	UBA3402 sp003478355	0.060%
UMGS743 sp900545085	0.058%	Enterocloster citroniae	0.057%
• Escherichia coli_C	0.056%	Serratia_A fonticola	0.054%
Clostridium sp900540255	0.053%	• Roseburia sp900552665	0.053%
Agathobacter sp900317585	0.052%	Bacteroides eggerthii	0.051%
Clostridium butyricum	0.051%	CAG-274 sp000432155	0.049%
Erysipelatoclostridium ramosum	0.049%	UBA11774 sp003507655	0.049%
Faecalibacterium prausnitzii_D	0.048%	Eisenbergiella sp900066775	0.047%
CAG-81 sp900066535	0.046%	Enterobacter roggenkampii	0.045%
Raoultella planticola	0.045%	• Alistipes sp900541585	0.044%
• Phocaeicola sp900554435	0.044%	Klebsiella aerogenes	0.043%
Bacteroides fragilis_A	0.042%	 Blautia_A sp000436615 	0.041%

tinyhealth

Tiny Health Lab Director: Carlos J Ruiz, MD • CLIA ID: 21D2062464

Note: This microbiome report is exclusively intended to be used for wellness purposes and to educate you about the microbes in your body. The tests we offer are not intended to diagnose or treat disease, or to substitute a physician's consultation. The microbes we talk about in your report, and their associations, are based on emerging scientific research. Feel free to share this with your physician or practitioner. These insights are determined by evaluating current research and may change over time to reflect the most up to date research available.

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00 UK Office:

11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page: 18 of 23

TEST NUMBER: T-NL-XXXXXX

GENDER: XXXXX
AGE: XX

COLLECTED: 2025-XX-XX

TEST REF: TST-NL-XXXXX

PRACTITIONER:

XXXXXXXXXXXXXXXXXXX

xxxxxxxxxxxxxxxxxxxx

TEST NAME: [Baby Gut Health] Tiny Health Sample Report

Agathobacter sp900546625	0.040%	Ruminococcus_A sp003011855	0.039%
Coprococcus sp900066115	0.038%	Ruthenibacterium lactatiformans	0.038%
Enterococcus_B mundtii_B	0.037%	UBA7057 sp900542735	0.037%
Bifidobacterium infantis	0.035%	UBA11524 sp000437595	0.035%
Citrobacter gillenii	0.033%	 Phocaeicola coprocola 	0.033%
Dialister succinatiphilus	0.032%	Eubacterium_F sp003491505	0.032%
Veillonella atypica	0.032%	CAG-115 sp000432175	0.031%
Clostridium botulinum_A	0.031%	Porphyromonas_A bennonis	0.031%
Veillonella rogosae	0.031%	CAG-180 sp000432435	0.030%
Corynebacterium vitaeruminis_A	0.030%	Enterobacter asburiae_B	0.030%
F23-B02 sp001916715	0.030%	Faecalibacterium prausnitzii_A	0.029%
Faecalibacterium prausnitzii_E	0.029%	Faecalibacterium prausnitzii_l	0.029%
• Lachnospira rogosae_A	0.029%	CAG-269 sp900553125	0.028%
Enterococcus_D sp002850555	0.028%	• Blautia sp900543715	0.027%
• Escherichia sp005843885	0.027%	• Lachnoclostridium_B sp900066765	0.027%
Veillonella sp900545205	0.027%	CAG-170 sp002404795	0.026%
Clostridium_Q sp003024715	0.026%	Dysosmobacter welbionis	0.025%
Intestinimonas butyriciproducens	0.025%	Anaerobutyricum sp900554965	0.024%
Parasutterella sp900552195	0.024%	Raoultella sp003752615	0.024%
Roseburia hominis	0.024%	Veillonella_A sp000431435	0.024%
Alistipes communis	0.023%	Faecalibacterium prausnitzii_J	0.023%
Pauljensenia odontolytica_B	0.023%	Prevotella sp900557255	0.023%
 Blautia_A sp900066205 	0.022%	Butyrivibrio_A crossotus	0.022%
CAG-269 sp000438255	0.022%	Collinsella sp900554255	0.022%
Enterobacter kobei	0.022%	Acinetobacter radioresistens	0.021%
Bacteroides cellulosilyticus	0.021%	Blautia_A sp003477525	0.021%
Sphingobacterium multivorum	0.021%	Veillonella sp003463825	0.021%
Anaerobutyricum soehngenii	0.020%	Bariatricus comes	0.020%
Coprococcus sp000154245	0.020%	Escherichia fergusonii	0.020%
uncultured crAssphage	0.020%	Eisenbergiella massiliensis	0.019%
Eubacterium_G ventriosum	0.019%	• Lachnospira sp900316325	0.019%

tinyhealth

Tiny Health Lab Director: Carlos J Ruiz, MD • CLIA ID: 21D2062464

Note: This microbiome report is exclusively intended to be used for wellness purposes and to educate you about the microbes in your body. The tests we offer are not intended to diagnose or treat disease, or to substitute a physician's consultation. The microbes we talk about in your report, and their associations, are based on emerging scientific research. Feel free to share this with your physician or practitioner. These insights are determined by evaluating current research and may change over time to reflect the most up to date research available.

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00 UK Office:

11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page: 19 of 23

TEST NUMBER: T-NL-XXXXXXX

GENDER: XXXXX
AGE: XX

COLLECTED: 2025-XX-XX

TEST REF: TST-NL-XXXXX

PRACTITIONER:

XXXXXXXXXXXXXXXXXXXX

xxxxxxxxxxxxxxxxxxx

TEST NAME: [Baby Gut Health] Tiny Health Sample Report

Sutterella wadsworthensis_A	0.019%	Blautia_A faecis	0.018%
Clostridium cuniculi	0.018%	Coprococcus eutactus_A	0.018%
Dysosmobacter sp001916835	0.018%	Evtepia gabavorous	0.018%
Lawsonibacter asaccharolyticus	0.018%	Blautia_A sp900066335	0.017%
Collinsella sp002232035	0.017%	Faecalimonas phoceensis	0.017%
Salmonella enterica	0.017%	UMGS1071 sp900548305	0.017%
Agathobacter sp900550845	0.016%	• CAG-127 sp900319515	0.016%
CAG-1427 sp000436075	0.016%	CAG-81 sp900066055	0.016%
Campylobacter_A concisus_F	0.016%	Citrobacter sp005281345	0.016%
Enterobacter cloacae_M	0.016%	Enterococcus phage phiFL4A	0.016%
Mediterraneibacter torques	0.016%	UMGS1375 sp900066615	0.016%
Dialister sp900555245	0.015%	Dorea_A longicatena_B	0.015%
Enterocloster lavalensis	0.015%	 Intestinibacter bartlettii 	0.015%
Pantoea sp008632075	0.015%	 Blautia_A sp000285855 	0.014%
CAG-45 sp000438375	0.014%	Clostridium saudiense	0.014%
Ocollinsella sp900754745	0.014%	Desulfovibrio sp900556755	0.014%
Dorea_A longicatena	0.014%	Escherichia flexneri	0.014%
Bifidobacterium bifidum	0.013%	CAG-196 sp002102975	0.013%
• Prevotella copri_A	0.013%	TF01-11 sp003524945	0.013%
Varibaculum cambriense_B	0.013%	Bacteroides acidifaciens	0.012%
Clostridium tertium	0.012%	Coprobacillus cateniformis	0.012%
Eisenbergiella tayi	0.012%	Finegoldia magna	0.012%
Hungatella effluvii	0.012%	Pantoea ananatis	0.012%
Peptoniphilus_A harei	0.012%	 Phocaeicola massiliensis 	0.012%
UBA3789 sp900543055	0.012%	Veillonella sp900552715	0.012%
Blautia_A caecimuris	0.011%	Campylobacter_A concisus_T	0.011%
Clostridioides difficile_A	0.011%	Clostridium_AQ innocuum	0.011%
Enterobacter hormaechei_A	0.011%	GCA-900066135 sp900543575	0.011%
• Lachnospira sp003451515	0.011%	Ruminiclostridium_E sp900539195	0.011%
Veillonella sp900538355	0.011%	Bacteroides nordii	0.010%
CAG-317 sp900543415	0.010%	CAG-495 sp001917125	0.010%

tiny health

Tiny Health Lab Director: Carlos J Ruiz, MD • CLIA ID: 21D2062464

Note: This microbiome report is exclusively intended to be used for wellness purposes and to educate you about the microbes in your body. The tests we offer are not intended to diagnose or treat disease, or to substitute a physician's consultation. The microbes we talk about in your report, and their associations, are based on emerging scientific research. Feel free to share this with your physician or practitioner. These insights are determined by evaluating current research and may change over time to reflect the most up to date research available.

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00 UK Office:

11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page: 20 of 23

TEST NUMBER: T-NL-XXXXXX

GENDER: XXXXX
AGE: XX

COLLECTED: 2025-XX-XX

TEST REF: TST-NL-XXXXX

PRACTITIONER:

XXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

TEST NAME: [Baby Gut Health] Tiny Health Sample Report

CAG-83 sp003487665	0.010%	Citrobacter werkmanii	0.010%
Corynebacterium sp001807205	0.010%	Enterocloster asparagiformis	0.010%
Klebsiella_A huaxiensis	0.010%	Phocaeicola sartorii	0.010%
UBA7182 sp003481535	0.010%	Veillonella parvula	0.010%
microbiome but also very difficult to accurately	detect. Detections	abundance organisms can be important member below 0.01% abundance have an increased risk se positive identifications are closely related to a	of being false
Bacteroides intestinalis	0.009%	Bacteroides sp003463205	0.009%
• Blautia_A sp900548245	0.009%	Butyrivibrio_A sp900543865	0.009%
crAssphage cr4_1	0.009%	Intestinibacter sp900553485	0.009%
Phascolarctobacterium faecium	0.009%	Porphyromonas_A somerae	0.009%
Ruminococcus_C sp000980705	0.009%	• Streptococcus sp001556435	0.009%
UBA1777 sp900547315	0.009%	Veillonella infantium	0.009%
Veillonella sp900549845	0.009%	Bacteroides sp902362375	0.008%
Blautia stercoris	0.008%	CAG-83 sp000435555	0.008%
Collinsella sp003487125	0.008%	Collinsella sp900760905	0.008%
Enterobacter bugandensis	0.008%	Enterocloster sp005845215	0.008%
Enterococcus_B sp011038845	0.008%	Erysipelatoclostridium spiroforme	0.008%
Ezakiella massiliensis	0.008%	• Lachnospira sp003537285	0.008%
MWCK01 sp002070005	0.008%	Adlercreutzia celatus_A	0.007%
Clostridium baratii	0.007%	Ocollinsella sp900544725	0.007%
Collinsella sp900547765	0.007%	Ocllinsella sp900549455	0.007%
Ocollinsella sp900554135	0.007%	Ocllinsella sp900556205	0.007%
Corynebacterium sp001767255	0.007%	Corynebacterium sp001831515	0.007%
Dorea_B phocaeensis	0.007%	Enterococcus_A avium	0.007%
F23-B02 sp002472405	0.007%	Faecalibacterium prausnitzii_H	0.007%
Gemmiger qucibialis	0.007%	Hafnia proteus	0.007%
NK3B98 sp900758315	0.007%	Romboutsia timonensis	0.007%
RUG115 sp900066395	0.007%	Sellimonas intestinalis	0.007%
Sutterella wadsworthensis	0.007%	Acetatifactor sp900066365	0.006%
Bacteroides sp007097645	0.006%	Bacteroides sp012113595	0.006%

tiny health

Tiny Health Lab Director: Carlos J Ruiz, MD • CLIA ID: 21D2062464

Note: This microbiome report is exclusively intended to be used for wellness purposes and to educate you about the microbes in your body. The tests we offer are not intended to diagnose or treat disease, or to substitute a physician's consultation. The microbes we talk about in your report, and their associations, are based on emerging scientific research. Feel free to share this with your physician or practitioner. These insights are determined by evaluating current research and may change over time to reflect the most up to date research available.

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00 UK Office:

11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page: 21 of 23

TEST NUMBER: T-NL-XXXXXX

GENDER: XXXXX
AGE: XX

COLLECTED: 2025-XX-XX

TEST REF: TST-NL-XXXXX

PRACTITIONER:

XXXXXXXXXXXXXXXXXXX

TEST NAME: [Baby Gut Health] Tiny Health Sample Report

CAG-110 sp000435995	0.006%	• CAG-83 sp000431575	0.006%
CAG-83 sp900552475	0.006%	Collinsella sp900540945	0.006%
Collinsella sp900541745	0.006%	Cronobacter malonaticus	0.006%
D5 sp900113995	0.006%	Dialister invisus	0.006%
Dysosmobacter sp014297375	0.006%	Enterocloster sp001517625	0.006%
Enterococcus_B pernyi	0.006%	Erwinia coffeiphila	0.006%
Erwinia sp003751505	0.006%	• Faecalibacterium sp900539945	0.006%
Haemophilus_D parainfluenzae_M	0.006%	Kosakonia radicincitans	0.006%
Kosakonia sacchari_B	0.006%	Peptoniphilus_A grossensis	0.006%
 Pseudoruminococcus massiliensis 	0.006%	 Roseburia sp003470905 	0.006%
• Streptococcus sp900766505	0.006%	Yersinia frederiksenii_A	0.006%

tinyhealth

Tiny Health Lab Director: Carlos J Ruiz, MD • CLIA ID: 21D2062464

Note: This microbiome report is exclusively intended to be used for wellness purposes and to educate you about the microbes in your body. The tests we offer are not intended to diagnose or treat disease, or to substitute a physician's consultation. The microbes we talk about in your report, and their associations, are based on emerging scientific research. Feel free to share this with your physician or practitioner. These insights are determined by evaluating current research and may change over time to reflect the most up to date research available.

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00 UK Office:

11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page: 22 of 23

TEST NUMBER: T-NL-XXXXXX

GENDER: XXXXX AGE: XX

COLLECTED: 2025-XX-XX

TEST REF: TST-NL-XXXXX

XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

TEST NAME: [Baby Gut Health] Tiny Health Sample Report

References

[1] A. Uzan-Yulzari et al., "Neonatal antibiotic exposure impairs child growth during the first six years of life by perturbing intestinal microbial colonization," Nat Commun, vol. 12, no. 1, p. 443, 2021, doi: 10.1038/s41467-020-20495-4.

[2] K. E. Fujimura et al., "Neonatal gut microbiota associates with childhood

[2] K. E. Fujimura et al., "Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation," Nat Med, vol. 22, no. 10, pp. 187–1191, 2016, doi: 10.1038/nm.4176.
[3] M. B. Azad et al., "Infant gut microbiota and food sensitization: associations in the first year of life," Clin Exp Allergy, vol. 45, no. 3, pp. 632–643, 2015, doi: 10.1111/cea.12487.
[4] H. M. Tun et al., "Roles of Birth Mode and Infant Gut Microbiota in Intergenerational Transmission of Overweight and Obesity From Mother to Officering", John Dedictry, 172, pp. 463, 2018, doi: 10.1111/j.cea.1172.

Intergenerational Transmission of Overweight and Obesity From Mother to Offspring," Jama Pediatr, vol. 172, no. 4, p. 368, 2018, doi: 10.1001/jamapediatrics.2017.5535.

[5] T. Vatanen et al., "The human gut microbiome in early-onset type 1 diabetes from the TEDDY study," Nature, vol. 562, no. 7728, pp. 589–594, 2018, doi: 10.1038/s41586-018-0620-2.

[6] C. J. Stewart et al., "Temporal development of the gut microbiome in early childhood from the TEDDY study," Nature, vol. 562, no. 7728, pp. 583–588, 2018, doi: 10.1038/s41586-018-0617-x.

[7] S. Tamburni, N. Shen, H. C. Wu, and J. C. Clemente, "The microbiome in early life: implications for health outcomes," Nat Med, vol. 22, no. 7, pp. 713–722, 2016, doi: 10.1038/nm.4142.

[8] M. J. Ege, "The Hygiene Hypothesis in the Age of the Microbiome," Ann Am Thorac Soc, vol. 14, no. Supplement_5, pp. S348–S353, 2017, doi: 10.1513/annalsats.201702-139aw.

[9] B. M. Henrick et al., "Bifidobacteria-mediated immune system imprinting

[9] B. M. Henrick et al., "Bifidobacteria-mediated immune system imprinting early in life," Cell, 2021, doi: 10.1016/j.cell.2021.05.030.
[10] A. Marcobal et al., "Bacteroides in the Infant Gut Consume Milk Oligosaccharides via Mucus-Utilization Pathways," Cell Host Microbe, vol. 10,

[10] A. Marcobal et al., "Bacteroides in the Infant Gut Consume Milk Oligosaccharides via Mucus-Utilization Pathways," Cell Host Microbe, vol. 10, no. 5, pp. 507–514, 2011, doi: 10.1016/j.chom.2011.10.007.
[11] T. Wilmanski et al., "Gut microbiome pattern reflects healthy ageing and predicts survival in humans," Nat Metabolism, vol. 3, no. 2, pp. 274–286, 2021, doi: 10.1038/s42255-021-00348-0.
[12] M. A. Jackson et al., "Signatures of early frailty in the gut microbiota," Genome Med, vol. 8, no. 1, p. 8, 2016, doi: 10.1186/s13073-016-0262-7.[13] J. M. Pickard, M. Y. Zeng, R. Caruso, and G. Núñez, "Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease," Immunol Rev, vol. 279, no. 1, pp. 70–89, 2017, doi: 10.1111/jimr.12567.
[13] J. M. Pickard, M. Y. Zeng, R. Caruso, and G. Núñez, "Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease," Immunol Rev, vol. 279, no. 1, pp. 70–89, 2017, doi: 10.1111/jimr.12567.
[14] O. Manor et al., "Health and disease markers correlate with gut microbiome composition across thousands of people," Nat Commun, vol. 11, no. 1, p. 5206, 2020, doi: 10.1038/s41467-020-18871-1.
[15] M. Scudellari, "Cleaning up the hygiene hypothesis," Proc National Acad Sci, vol. 114, no. 7, pp. 1433-1436, 2017, doi: 10.1073/pnas.1700688114.[16] R. Debray, R. A. Herbert, A. L. Jaffe, A. Crits-Christoph, M. E. Power, and B. Koskella, "Priority effects in microbiome assembly," Nat Rev Microbiol, vol. 20, no. 2, pp. 109–121, 2022, doi: 10.1038/s41579-021-00604-w.

B. Koskella, "Priority effects in microbiome assembly," Nat Rev Microbiol, vol. 20, no. 2, pp. 109–121, 2022, doi: 10.1038/s41579-021-00604-w. [17] C. Huttenhower et al., "Structure, function and diversity of the healthy human microbiome," Nature, vol. 486, no. 7402, pp. 207–214, 2012, doi: 10.1038/nature11234.

[18] P. I. Costea et al., "Enterotypes in the landscape of gut microbial community composition," Nat Microbiol, vol. 3, no. 1, pp. 8–16, 2018, doi: 10.1038/s41564-017-0072-8.
[19] W. E. Anthony et al., "Acute and persistent effects of commonly used

antibiotics on the gut microbiome and resistent effects of confinding deed antibiotics on the gut microbiome and resistome in healthy adults," Cell Reports, vol. 39, no. 2, p. 110649, 2022, doi: 10.1016/j.celrep.2022.110649. [20] A. Palleja et al., "Recovery of gut microbiota of healthy adults following antibiotic exposure," Nat Microbiol, vol. 3, no. 11, pp. 1255–1265, 2018, doi: 10.1038/4554.01.00357.0 10.1038/s41564-018-0257-9.

[21] A. Bell et al., "Elucidation of a sialic acid metabolism pathway in mucus-foraging Ruminococcus gnavus unravels mechanisms of bacterial adaptation to the gut," Nat Microbiol, vol. 4, no. 12, pp. 2393–2404, 2019, doi: 10.1038/s41564-019-0590-7.

[22] M. T. Henke, D. J. Kenny, C. D. Cassilly, H. Vlamakis, R. J. Xavier, and J. Clardy, "Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn's disease, produces an inflammatory polysaccharide," Proc National Acad Sci, vol. 116, no. 26, pp. 12672-12677, 2019, doi: 10.1073/pnas.1904099116.

[23] W. Li et al., "Ecological and network analyses identify four microbial species with potential significance for the diagnosis/treatment of ulcerative collits (UC)," Bmc Microbiol, vol. 21, no. 1, p. 138, 2021, doi: 10.1186/s12866-021-02201-6.

[24] F. Blachier, M. Beaumont, and E. Kim, "Cysteine-derived hydroge sulfide and gut health," Curr Opin Clin Nutr, vol. 22, no. 1, pp. 68–75, 2019, doi: 10.1097/mco.0000000000000526.

doi: 10.1097/mco.000000000000526. [25] S. C. Peck, K. Denger, A. Burrichter, S. M. Irwin, E. P. Balskus, and D. Schleheck, "A glycyl radical enzyme enables hydrogen sulfide production by the human intestinal bacterium Bilophila wadsworthia," Proc National Acad Sci, vol. 116, no. 8, pp. 3171–3176, 2019, doi: 10.1073/pnas.1815661116. [26] H. M. HAMER, D. JONKERS, K. VENEMA, S. VANHOUTVIN, F. J. TROOST, and R. -J. BRUMMER, "Review article: the role of butyrate on colonic function," Aliment Pharm Therap, vol. 27, no. 2, pp. 104–119, 2008, doi: 10.1111/j.1365-2026.2007.03562.

doi: 10.1111/j.1365-2036.2007.03562.x.
[27] Y. Furusawa et al., "Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells," Nature, vol. 504, no. 7480, pp. 446–450, 2013, doi: 10.1038/nature12721.

[28] H. Sokol et al., "Faecalibacterium prausnitzii is an anti-inflammatory

commensal bacterium identified by gut microbiota analysis of Crohn disease patients," Proc National Acad Sci, vol. 105, no. 43, pp. 16731–16736, 2008, doi: 10.1073/pnas.0804812105. [29] D. Ríos-Covián, P. Ruas-Madiedo, A. Margolles, M. Gueimonde, C. G. de

los Reyes-Gavilán, and N. Salazar, "Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health," Front Microbiol, vol. 7, p. 185, 2016,

doi: 10.3389/fmicb.2016.00185.
[30] Q. Zhou et al., "Association Between Gut Akkermansia and Metabolic Syndrome is Dose-Dependent and Affected by Microbial Interactions: A Cross-Sectional Study," Diabetes Metabolic Syndrome Obes Targets Ther, vol. 14, pp. 2177–2188, 2021, doi: 10.2147/dmso.s311388.

tinyhealth

Tiny Health Lab Director: Carlos J Ruiz, MD • CLIA ID: 21D2062464

Note: This microbiome report is exclusively intended to be used for wellness purposes and to educate you about the microbes in your body. The tests we offer are not intended to diagnose or treat disease, or to substitute a physician's consultation. The microbes we talk about in your report, and their associations, are based on emerging scientific research. Feel free to share this with your physician or practitioner. These insights are determined by evaluating current research and may change over time to reflect the most up to date research available

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00

UK Office:

11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page: 23 of 23