

R.G.C.C.- RESEARCH GENETIC CANCER CENTRE S.A.

Florina, 20.02.2024

Dear Colleague,

We report the allelic discrimination results for patient John Doe whose sample receipt on 08.02.2024. DNA was extracted from blood sample and was used as template in PCR reactions. Molecular-based assays and spectrophometer analysis were used to verify the DNA. In all reactions genomic DNA was used as a positive control. The reactions were performed in triplicates.

The graduated bars indicate any potential positive or negative outcome. An arrow on the green or the red part of the bar demonstrates the outcome.

Basic

Drug	Polymorphism	Outcome
	CYP1A1*2C	∇ Normal Metabolizer
	CYP1A2*1F	Possible Normal Metabolizer
	CYP1A2*1K	Normal Metabolizer
	CYP1B1*Leu432Val	Possible Poor Metabolizer
	CYP2C19*17	Fast Metabolizer
	CYP2C19*2	Normal Metabolizer
N. I	CYP2C19*3	Poor Metabolizer
Phase I	CYP2C9*2	Normal Metabolizer
	CYP2C9*3	Normal Metabolizer
	CYP2D6*10	
	CYP2D6*2	Normal Metabolizer
	CYP2D6*3B	Normal Metabolizer
	CYP3A4*1B	Normal Metabolizer
	CYP3A4*20	Normal Metabolizer
Phase II	ABCB1*Ile1145Ile	Possible Poor Metabolizer
	ABCG2*Gln141Lys	Normal Metabolizer

EI	PHX1*His139Arg	Normal Metabolizer
EI	PHX1*Tyr113His	Normal Metabolizer
G	STP1*Ala114Val	Normal Metabolizer
G	STP1*Ile105Val	Normal Metabolizer
	NAT2*11A	Possible Normal Metabolizer
	NAT2*12A	Possible Normal Metabolizer
	NAT2*13	Possible Normal Metabolizer
	NAT2*14	Normal Metabolizer
	NAT2*5D	Possible Normal Metabolizer
	NAT2*6B	Possible Normal Metabolizer
	NAT2*7A	Normal Metabolizer
	TPMT*2	Normal Metabolizer
	TPMT*4A	Normal Metabolizer

ALKYLATING AGENTS

Drug	Polymorphism	Outcome
Carboplatin	ALDH3A1*Pro329Ala	Increased likelihood of cystitis (carboplatin, cyclophosphamide, thiotepa)
	COMT*19955692C>T	Decreased risk of Ototoxicity in children
	ERCC1*Gln504Lys	Better response and decreased vomiting during the first 24 hours post-cisplatin administration (granisetron or palonosetron)
Cisplatin	GSTP1*Ile105Val	Increased risk of toxicity
	LRP2*Lys4094Glu	Decreased risk of hearing loss
	XPC*Gln902Lys	Increased risk for toxicity
Cyclophosphamide	ALDH3A1*Pro329Ala	Increased likelihood of cystitis (carboplatin, cyclophosphamide, thiotepa)
Platinum compounds	ERCC1*Asn118Asn	Increased risk for nephrotoxicity
	ERCC1*Gln504Lys	Increased risk for nephrotoxicity
	NQO1*Pro149Ser	Increased overall, progression-free survival

Topo I Inhibitors

Drug	Polymorphism	Outcome
Irinotecan	UGT1A1*172270T>G	Increased risk of neutropenia
	UGT1A1*Gly71Arg	Decreased risk of neutropenia

Topo II Inhibitors

Drug	Polymorphism	Outcome
Anthracyclines	CBR1*133G>A	Increased risk of cardiomyopathies (low to moderate dose)
	CBR3*Val244Met	Increased risk of Heart Failure
Daunorubicin	NRP2*110077C>G	Decreased IC50
Doxorubicin	ABCC2*Cys1515Tyr	Increased risk of cardiotoxicity
	ABCC2*Val1188Glu	Increased risk of cardiotoxicity

Antimetabolites

Drug	Polymorphism	Outcome
	DPYD*1905+1G>A	Increased risk of drug toxicity
	DF1D*1903+1G>A	(5-fluorouracil, capecitabine, tegafur)
	DPYD*1905+1G>A	Increased risk of drug toxicity, Leukopenia, Mucositis
	DPYD*1905+1G>A	Increased risk of drug toxicity
	DPYD*1905+1G>A	Decreased metabolism
	DPYD*1905+1G>A	Increased likelihood of drug toxicity (5-fluorouracil, capecitabine)
	DPYD*1905+1G>A	Increased likelihood of Thrombocytopenia
	DPYD*1905+1G>A	Increased likelihood of Mucositis
	DPYD*Asp949Val	Decreased severity of drug toxicity
5-Fluorouracil	DPYD*Asp949Val	Decreased likelihood of drug toxicity (5-fluorouracil, capecitabine)
	DPYD*Cys29Arg	Increased likelihood of Nausea and Vomiting
	DPYD*Cys29Arg	Decreased likelihood of overall gastrointestinal toxicity
	DPYD*Cys29Arg	Increased metabolism
	DPYD*Ile543Val	Decreased likelihood of Nausea and Vomiting
	DPYD*Ile543Val	Increased clearance
	DPYD*Ile543Val	Decreased likelihood of Leukopenia
	DPYD*Met166Val	Decreased metabolism

	DPYD*Met166Val	Decreased likelihood of Neutropenia
Capecitabine	DPYD*1905+1G>A	Increased risk of drug toxicity (5-fluorouracil, capecitabine, tegafur)
	DPYD*1905+1G>A	Increased likelihood of drug toxicity
	DPYD*Asp949Val	Decreased likelihood of drug toxicity (5-fluorouracil, capecitabine)
Cytarabine	CDA*20915590delC	Decreased drug toxicity
	CDA*-92A>G	Decreased drug toxicity
	CDA*Lys27Gln	Decreased drug toxicity
Gemcitabine	CDA*Ala70Thr	Decreased severity of Neutropenia
Methotrexate	MTHFR*Glu429Ala	Decreased risk of mucositis

Spindle Poisons

Drug	Polymorphism	Outcome
Docetaxel	CYP3A4*1B	Decreased clearance
Paclitaxel	CYP2C8*23210C>G	Increased risk of Neurotoxicity
	CYP3A5*12083G>C	Decreased risk of Neurotoxicity

Appendix:

Drug Metabolism:

Phase I:

Phase I enzymes are responsible reactions that convert parent compound into a more polar metabolite by adding or unmasking functional groups. Usually these metabolites are inactive. Phase I reactions include, oxidation, reduction, hydrolytic cleavage, alkylation, methylation, ring cyclization etc. These reactions prepare chemicals for phase II metabolisms and subsequent excretion.

The Cytochrome P450 (CYP) enzyme superfamily is the most important system in the biotransformation of many endogenous and exogenous substances, such as drugs, toxins and carcinogens. For drug metabolism the most important polymorphisms are those of the genes coding for CYP2C9, CYP2C19, CYP2D6 and CYP3A4. CYP1A1 and CYP1A2 are among the most responsible for biotransformation of chemicals, especially for the metabolic activation of precarcinogens. Genetic polymorphism is an important reason for variations in drug response of the human body. There are four distinct phenotypes: poor metaboliser (PM), intermediate metaboliser (IM), extensive metaboliser (EM) and ultrarapid metaboliser (UM). A poor metaboliser lacks active allele and may present adverse effects at usual doses, due to reduced metabolism and increased drug concentration. Individuals with intermediate metabolic phenotype are homozygous for two reduced activity alleles or are heterozygous for an inactive allele. Extensive metabolisers have two fully active allele and show the expected response to a standard dose. Ultra extensive metabolisers are individuals with more than two copies of active gene.

- Cytochrome P450 2D6 is one of the most important enzymes, involved in the metabolisms of xenobiotics in the body, but also in activation of many substances in their active compounds.
- Cytochrome P450 2C19 is responsible for metabolisation or activation of many hormones and drugs (anti-epileptics, anti-depressants, anti-platelet clopidogrel, esomeprazole).
- Cytochrome P450 1A2 is involved in metabolism of xenobiotics substrates such caffeine, aflatoxin B1 and acetaminophen.
- Cytochrome P450 3A4 is one of the most important enzymes involved in xenobiotics metabolism in human body. It metabolizes some steroids and carcinogens. Approximately half of the drugs that are used are metabolized by this protein, such acetaminophen, codeine, cyclosporine, diazepam and erythromycin.
- Cytochrome P450 2C9 is an enzyme with a major role in the oxidation of both xenobiotics and endogenous compounds. Warfarin, phenytoin, acenocoumarol, tolbutamide, losartan glipizide and a few nonsteroidal anti-inflammatory drugs (aspirin, ibuprofen, naproxen) are metabolized by CYP2C9.

Phase II:

The Phase II reactions are conjugations with endogenous substrate to further increase aqueous

solubility and conjugations with glucoronide, sulfate, acetate, amino acid etc. N-acetyltransferase 2

(NAT2), Epoxide hydrolase 1 (EPHX1), Glutathione S-transferase P (GSTP1) and Thiopurine methyltransferase (TPMT) are the major enzymes involved in phase II drug metabolism.

• N-acetyltransferase 2 (NAT2), is an enzyme that activates and deactivates arylamine and hydrazine

drugs and carcinogens. Human populations segregated into rapid, intermediate and slow acetylator

phenotypes, according to different polymorphisms combinations.

• Glutathione S-transferases are responsible for the detoxification of a range of drugs and potential

carcinogens, through glutathione conjucation. The GSTP1 is associated with xenobiotics metabolism

and susceptibility to cancer and other diseases.

• Thiopurine S-methyltransferase (TPMT) is an enzyme that metabolises thiopurine drugs such as

azathioprine, 6-mercaptopurine and 6-thioguanine. Individual homozygous for two non-functional

TPMT variants are at high risk for toxic side effects, due to decreased methylation and decreased

inactivation of 6MP.

Pharmacodynamics:

• P-glycoprotein 1, or multidrug resistance protein 1, or ATP-binding cassette sub-family B member 1

(ABCB1), or CD243, is an ATP-dependent drug efflux pump for xenobiotics compounds with broad

substrate specificity. ABCB1 regulates the distribution and bioavailability if drugs, removes toxic

metabolites and xenobiotics from cells, transports compounds out of brain and protects hematopoietic

stem cells from toxins.

• ATP-binding cassette sub-family G member 2 (ABCG2), is a xenobiotic transporter with important

role in the multidrug resistance phenotype of several cancer cell lines.

Sincerely,

Panagiotis Apostolou Molecular Biologist Ioannis Papasotiriou MD., PhD
Head of molecular medicine dpt. of

R.G.C.C.-RESEARCH GENETIC CANCER CENTRE S.A.